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ABSTRACT

The goal of this paper is to evaluate the parallel perforreasfca newly devel-
oped fluid dynamic flow solver ADPDIS3D. ADPDIS3D is a 3-D ‘aalie high or-
der multiblock overlapping grid code in curvilinear geones. It includes a unified
treatment of gas dynamics/MHD (magnetohydrodynamics)fifioid, combustion
and nonequilibrium flows. The code is based on low dissipdtigh-order accurate
spatial finite difference methods (Yee et al., 1999; Yee &gggen, 2007, 2008) for
turbulence with shock computations. Flow sensors are usad adaptive procedure
to analyze the computed flow data and indicate the amourtitocand type of built-
in shock-capturing numerical dissipation that can be elated or further reduced.
By design, the flow sensors, spatial base schemes and nandissipation models
are standalone modules. The current version of the codestsws high order central
spatial base schemes of order up to 14, and adaptive nonfilees of order up to 9.
The code also includes the sixth-order central compactseheith an eighth-order
compact filter. Standard shock-capturing schemes anddgbhiemes of order up to
nine are included. To further minimize the use of numerigasighation, the conser-
vative and non-conservative skew-symmetric splittinghef gas dynamics equations
(Sjogreen & Yee, 2009; Yee et al., 2000) are included in theecAADPDIS3D was
originally designed for time-accurate simulation of hygmaric turbulent flows, in-
cluding combustion, plasma, thermal and chemical nonigiuiin flows. Different
type and order of spatial base schemes and filter dissifsatiem be used on different
grid blocks.

ADPDIS3D makes use of overset grids, generated by the gnergéor Ogen
(Henshaw, 1998). In a parallel performance study, ADPDISB8&ws good weak and
strong scaling with up to 15,000 processors on the NASA sagmeputer Pleiades.
When the number of processors becomes very large, I/O opesatian become a
critical factor in the overall execution time. We presentimaproved algorithm for
parallel 1/0, used by ADPDIS3D, which has good scaling proes.
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PARALLEL FLOW SOLVER AND GRID GENERATOR

ADPDIS3D is a high order time-accurate solver that is capalblsolving com-
pressible fluids containing a wide range of flow speeds andrdeuof different gov-
erning equation sets. The currently implemented modelsigecthe Euler/Navier-
Stokes equations of standard compressible gas dynamésgtiations of non-ideal
magnetohydrodynamics, and the equations of multi-speciedustion with or with-
out thermodynamic non-equilibrium models. The code is eigfig suitable for sim-
ulation of hypersonic turbulent flows, including combustiglasma, thermal and
chemical non-equilibrium flows. ADPDIS3D approximates flesv equations by
node centered finite difference discretizations on curedir grids. For simulation in
complex geometries, ADPDIS3D uses composite overset isladk overlapping)
grids generated by the Ogen [3] grid generator. Differepetand order of spatial
schemes can be used on different grid blocks.

ADPDIS3D is based on efficient low dissipative high-ordenaate spatial meth-
ods that include limiting and filtering with flow sensors [H],12]. The idea of the
method is to advance in time with a highly accurate base sehand to apply a non-
linear filter after each full time step to suppress Gibbsilteons at discontinuities
and other unphysical phenomena caused by locally non-¢$nemttion features.
The filters consist of the dissipative portion of a high ordieock-capturing method
multiplied by a flow sensor, where the flow sensor switcheshendissipation only
where needed. Any dissipative portion of a shock-captusiciteme can be used as
the nonlinear filter dissipation. By design, the flow sensspsatial base schemes and
nonlinear dissipation models are standalone modules.efdrer, a whole class of low
dissipative high order filter schemes can be derived witle edslike standard shock-
capturing and/or hybrid shock-capturing methods, theinear filter method requires
one Riemann solver per dimension, independent of time eligations. Thus the
nonlinear filter method is more efficient and accurate thaushiock-capturing coun-
terparts employing the same order of the respective schembs preferred flow
sensors in ADPDIS3D are based on a wavelet decompositidredfdw field.

The current version of ADPDIS3D contains central spatiaebachemes of or-
ders up to 14, and adaptive nonlinear filters obtained froendissipative portion of
WENO schemes of orders up to nine. The code also includes la@ider central
compact scheme with an eighth-order compact filter. Forscomsnparison purpose,
standard shock-capturing schemes and hybrid schemes @f ong to nine are in-
cluded. To further minimize the use of numerical dissipatmd tuning of filter pa-
rameters, the conservative and non-conservative skewngync splitting of the gas
dynamics equations [10, 8, 2, 13], and a flow speed indica®jrdre included in the
code. Numerical experiments on several dozens of multedsional test cases with
a wide range of flow types indicate highly time-accurate dfidient simulations can
be obtained.

ADPDIS3D advances the solution in time by Runge-Kutta tite@ging, where
temporal order of accuracy can be one through fourth-axgey.three. For reacting
flows, point implicit and implicit Runge-Kutta methods aneluded.

One of the complications for parallel computation with hggder spatial schemes
is that the computational stencils are very wide, which $eta large number of
additional ghost points at the boundaries between procddsoks. Furthermore,
ADPDIS3D uses summation-by-parts boundary modificatidch@bperators near the
physical boundaries [5, 9]. When the number of processorsases, these boundary



operators can make up a significant part of the computatidoralain in some of the
processors. The load balancing algorithm used by ADPDI&BEgs these effects into
account.

For parallel execution on overset grids, each componedtigevenly distributed
over the total number of processors available. This givefepeload balancing, but
the amount of communication is larger than optimal. For thlieit time stepping
used in ADPDIS3D, the communication cost is still only a drfrattion of the total
computation time. The approach is most efficient when thepomite grid is made up
of a few large component grids, because of low computatiamotomunication ratio
when component grids with very few grid points are distrézlibn a large number of
processors. See the following section for examples of pedoce.

The overlapping grid generator Ogen (part of the Overtuaenwork developed
at Lawrence Livermore National Laboratories) is used tostutt overlapping grids
for ADPDIS3D. Given a set of structured curvilinear compain@meshes that cover a
computational domain and overlap where they meet each,dbieoverlapping grid
generation algorithm will determine how the grids shoulterpolate from one an-
other. This process involves the cutting of holes whereigastof grids are removed
where they lie outside the computational domain. There arenaber of important
issues that must be addressed to make the grid generaticesgrgeneral, robust and
automatic. The algorithm used by Ogen has been recentlyneetdao run on dis-
tributed memory parallel computers. This speeds up theggiteration process and
also permits very large grids to be generated.

The objective of this paper is to evaluate the parallel perémce of the newly
developed compressible flow solver, ADPDIS3D, by reportingecently performed
benchmark computations with the solver on the new NASA stgraeputer Pleiades.
The essential feature of ADPDIS3D is that it combines theabdjies of a hyper-
sonic flow solver for complex geometries with the capaleititof a solver for direct
numerical simulation of turbulence.

EXAMPLE COMPUTATIONS

Often, hypersonic turbulent flows around re-entry spacacket and in space
physics involve mixed steady strong shocks and turbulentrewmsteady shocklets.
Figure 1 illustrates a schematic of many of the possibledsteand unsteady flow
types. While sixth-order or higher order shock-capturinghods are appropriate for
unsteady turbulence with shocklets, lower order shockwram methods are more
effective for strong steady or nearly steady shocks in tesht®nvergence. In order
to minimize the shortcomings of low order and high order $hoapturing schemes,
ADPDIS3D allows different order of accuracy on differentngogonent grids. The
two- and three-dimensional test cases reported in [7]tis that the overall error in
high speed flow computations is reduced, even if high ordez®es are used on only
some of the component grids. The two shown in Figs. 2—4 detraiaghe unique
capability of ADPDIS3D to both solve for flows in complex geetmes, and perform
direct numerical simulations of turbulence.

The first example is a 3-D inviscid flow past an Apollo-likeestry space vehicle
with an overlapping grid system indicated in Fig.. 2a. Theneesix grids in total. The
Cartesian background grid has a fairly coarse grid spacihg.biody is defined by a
spline curve, rotated around tikeaxis with two orthographic cap grids that cover the
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Figure 2. Two-dimensional slice through the grid and Mach number coleidén logarith-
mic scale for an Apollo-like CEV, Mach 16.

polar singularities. A cylindrical grid together with a Castan grid that covers its
polar singularity are inserted in the wake region. The gpdang is approximately
0.05 on the body and wake grids and about five times larger @ Ctrtesian back-
ground grid. Fig. 2b shows computed Mach number color legalthe same 2-D
slice as the grid. The free stream Mach number is 16 in thigocaation.

Figures 4 and 3 show turbulent mixing by a Richtmyer-Meshikstability [4].
The initial condition is a tube with air to the left and &6 the right of an interface.
Figure 3 shows the initial flow configuration. The tube is eldat the right end. A
shock wave is sent in from the left. After passing throughdhéSk; interface the
shock wave is reflected at the end of the tube. The reflectezkgiasses through the
interface and mixes the interface once more. Figure 4 shosvsiterface, represented
as the iso-surface ok = 1/2, whereyy;, is the mass fraction of air in the mixture.
The interface is given a small initial perturbation to trgggnulti-dimensional effects.
The increased mixing of the reflected shock can be assessadrig. 4, where the left
subfigure shows the interface after the first shock intevac&nd the right subfigure
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Figure 3. Richtmyer-Meshkov instability, geometry and initial data.
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Figure 4. Richtmyer-Meshkov instability in Air/gFMaterial interface before (left) and after
(right) reshock. Iso-surface at 1/2 of air mass fraction.
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shows the interface after the interaction with the reflesteack.

PARALLEL PERFORMANCE

Figure 5 shows weak scaling on Pleiades (A supercomputbrd&00 proces-
sors at NASA Ames Research Center) for the Taylor-Green xgteblem [1] in
three space dimensions on a single block grid. The totalugiattime for a small
number of time steps is measured when the number of grid ppert processor is
fixed at 216000. The number of processors varies up tg6P%. The number of pro-
cessors for the data points in Fig. 5 is always a cyidefor integersp = 2,...,25.
This means that not only is the number of points per processwstant, but also that
the shape of data in each processor is always the same (a clibe)work load at
the boundaries of the domain is identical in each processmmause the boundary
conditions are periodic. Therefore, the number of arithmeperations is exactly
the same in each processor. Any deviation from a perfecthgtamt execution time
must be attributed to differences in network performandeis hot surprising that
the performance is superior when the number of processemaadl, because, in that
case, the processors are closer to each other, in the saragarad the same rack.
Figure 5 shows both the performance with fixed time step (aed)) with fixed CFL
number (blue). When the time step is fixed, no global commuioicas necessary,
but when the CFL number is fixed, the size of the time step is enetpbefore each
time step. This entails more arithmetic operations and bhalloommunication step
to transmit the maximum stable time step to all processo@wvd¥er, as shown by
Fig. 5, the cost of the global communication, which theagdly should increase log-
arithmically with the number of processors, is not significat least up to 1@00
processors.

Figure 6 shows strong scaling on Pleiades for the Apolle-lEV geometry in
Fig. 2, with 65 million grid points on six component grids.gkre 6 shows results
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with up to 1024 processors, which corresponds to approxin&i8 000 points per
processor. The performance started to seriously degradarémr number of proces-
sors. Figure 6a shows the execution time for 100 time stepswsber of processors,
and Fig. 6b displays the corresponding efficiency. The efficy is normalized to be
one at the first data point, which was obtained with 32 pramssdiere the nontriv-
ial geometry, grids with cut out holes, and the global comitation step required
for the interpolation between overset grids are difficsltieat are not present in the
previous weak scaling example.

PARALLEL I/0

Arrays in ADPDIS3D are distributed on all available procass An array of
N1 x N2 x N3 points,u; j i, 1 <i <Ng, 1<) <Np, 1< k<N, is distributed on the
processors in blocks, where the block assigned to procgsisothe sub array; j i,
bp1 <i < epp, bpa < j < epp, bps < k< eps. The block index intervalsibp, €p1],
[bp2,€p2], and [bps, eps], cover the global index intervall, Ny, [1,Ny], and[1, N3],
respectively, with some overlap between processors thgrdts on the width of the
computational stencils used. The sizes of the array blogkaooessoip are denoted
Nip = €p1— bp1 +1,np=¢epp— bp2 +1, andngp =€p3— bp3 +1.

The array when written to a file, is ordered according to thabgl index, i.e.,
the gth element in the file is; j x whereq =i+ Ny(j — 1) + NiNa(k—1). The rep-
resentation in the file does not depend on the number of psocesised to write the
file.

Previous versions of ADPDIS3D wrote arrays to disk by Igfteach processor
write its own part of the array. The data held by a processar general not con-
secutive data items on the file. Thus thi processor had to write, in the general
case npphzp data chunks, each of sirg,. This algorithm is simple and reliable and
works fine with number of processors in the hundreds. Howtesalgorithm turned
out to be very inefficient on supercomputers with a very largmber of processors.
The inefficiencies come both from the large number of promessgarticipating in the
writing, and from the large number of write statements eadegss has to issue.



A recent improvement in ADPDIS3D is an algorithm in whichysbme of the
processors write and where each write operation writesgetaslock of data. This
is accomplished by ordering data more optimally for I/0O bggag it around in the
message passing network before each write operation. Beragresentation, the
description of the algorithm below assumes that all intedjeisions can be done
without remainder. The actual implementation in ADPDIS3ih ©iandle more gen-
eral dimension sizes.

Assume that the parallel computer Hagrocessors, enumeratpd=1,...,P. The
new algorithm takes as input a list of writing processogsg = 1,...,Q, withQ <P,
and a maximum sizse, such that an array of sizN\;N, can fit into the memory of
a single processor. The array is divided iQclices, with each slice of siza\; Ny,
along thek direction. The number of slices is thé\z/s. Since these slices will
be written byQ processors, each writing processor will be responsibléNfg( Qs)
slices. The writing, therefore, takes placdsin- N3/ (Qs) steps. In each step a slice of
sizesN{ N, is written from allQ writing processors. These steps will be enumerated
b=1,...,B. Itit straightforward to see that writeywill write the block

Dq.,b = [17 Nl] X [17 NZ] X [kq,b +1, kq,b + S]

wherekqp = ((q—1)B+b—1)sin stepb of the write operation. Before each of these
write steps, each processor must send the part of the arcayy], that it owns to
the writing processory,.

Figure 7 displays an outline of the writing algorithm. In Fig ny denotes the
number of send operations the processor executing theitflgymperforms in write
stepb, wi b, I = 1,...,np denotes the processor numbers that the processor executing
the algorithm, sends to in stépandG; ,, i = 1,...,n, denotes the intersection of the
part of the array that the processor executing the algoritiotds with the slice that is
being written by processan; y, in stepb. If the processor executing the algorithm is
a writer processor, the additional dag, y; ,, andH; ,, are needed, wherg, denotes
the number of receive operations the processor executa@ldorithm, performs
in write stepb, yip, | = 1,...,m, denotes the processor numbers that the processor
executing the algorithm receieves from in stg@andH; , i = 1,...,m, denotes the
intersection of the part of the array in procesggy with the slice that the processor
executing the algorithm is writing in stdp

The algorithm displayed in Fig. 8 shows how the dajaw; ,,, Gj , andmy, Y p,
Hi» can be computed. The algorithm in Fig. 8 has one loop thanestever all
processors, but the work performed inside the loop is verglsithe algorithm also
needs to store one integer array of sRe However, this array is not needed once
the data structure is set up. If the data structure is condpatee and stored before
the actual numerical computation, the memory requireméhhat grow excessively
with P. Scaling to computers with a large number of processorslditbarefore be
reasonably efficient. Parallel file systems allow the preoesto write data simulta-
neously. To allow several processors to write to the sameafitbe same time, files
on parallel file systems are distributed cyclically onto antmer of disks. The term
'disk’ will here refer to a logical disk, which in reality catonsist one or more phys-
ical disks, for redundancy and improved performance. Theans that if the number
of disks ('stripes’) iso and the stripe size isbytes, then the first bytes of the file is
stored on the first disk. The negbytes are stored on the second disk, etc. up to the
oth disk, after which distribution continues with disk numlome again. See Fig. 9
for a schematic view.



if lamrq then
set file pointer to positiofi, j,k) = (1,1,kq1+1)
endif
forb:=1toB
fori:=1tony
Send sub-blocks; ,, of my array to processaw; j,
endfor
if | am writerthen
allocate array of sizesNbN3
fori:=1tomy,
Receive the sub-blodH; ,, from processoy;
insert theH; y, sub-block intou
endfor
write u to disk
deallocateu
endif
endfor

Figure 7. Parallel write algorithm implemented in ADPDIS3D.

Performance investigations are complicated because #nera large number of
parameters that can vary. Among these are the number of, diekstripe size, the
number of processors participating in the 1/0, the data sizsach write statement,
the problem size, and the total number of processors. Irtiadda very significant
factor is the number of other users performing 1/O operaiahthe same time. In
the examples below, an array of size 1000000x 500, which gives a file of size 4
Gbyte when written, is distributed on 1024 processors. Tdralfel file system used
for the experiments has a maximum of 60 disks.

¢ From Fig. 10 we infer that unless the number of writing pssoes is very small,
it is always more efficient to use a large number of disks. d-er20 ando = 60 the
performance levels out when the number of writers exceedéfter 200 writing
processors, the time is almost constant, with some incresafige maximum number
1024 is reached.

All of the times reported in Fig. 10 are significantly smaltean with the older
approach where all processors wrote their own data patchetdile. With the old
algorithm, it could take more than an hour to write a file of & fggabytes size.
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